SISTEMA DE BÚSQUEDA DE NAÚFRAGOS DF 935 (DIRECTION FINDER)

Jose Alberto Benítez Andrades
@jabenitezdev
jabenitez@gmail.com

ÍNDICE

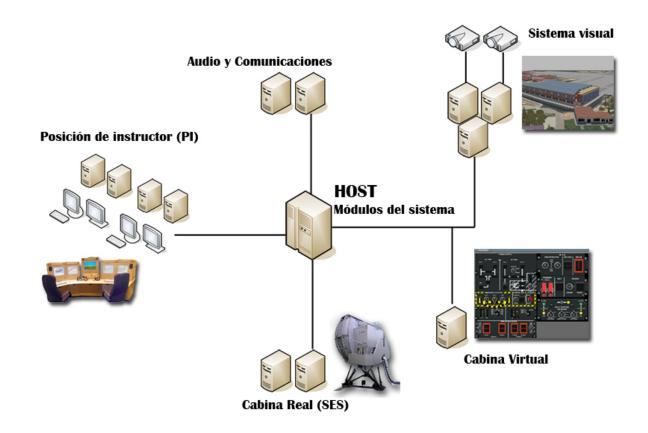
0. Introducción

- 1. Estructura del simulador
 - 1.1. PI HOST CV CREAL
 - 1.2. Desarrollo de módulos
- 2. Chelton DF935
 - 2.1. Análisis
 - 2.2. Desarrollo y pruebas realizadas
- 3. Demostración en cabina virtual
- 4. Vídeos y fotos del simulador
- 5. Conclusiones
 - 5.1. Posibles mejoras
 - 5.2. Conclusiones finales

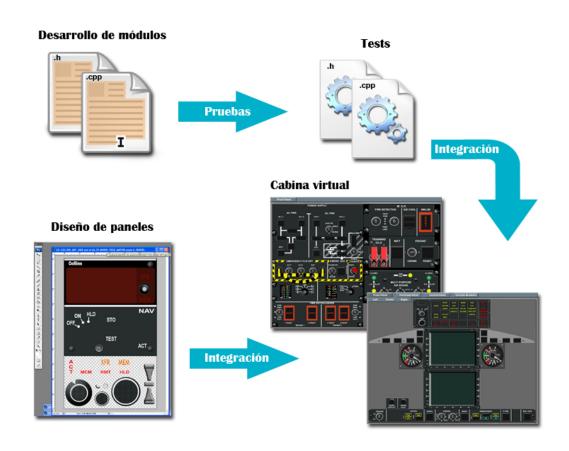
- Lenguaje: GNU C++
- Dirigido por: Jorge Balbás Rodrigo
- Supervisado por: Miguel Ángel Benítez Andrades
- Presencia necesaria en el CES, durante el desarrollo y pruebas
- Detalle:
 - Estudio de la metodología de desarrollo de módulos de simulación de Indra. Programación orientada a objetos bajo entorno Linux.
 - Estudio del equipo real a simular DF935.
 - Desarrollo de interface HMI gráfico simulando el interface real e integración en una consola simulada.
 - Simulación del equipo de detección de náufragos (DF935).
 - Integración de dicho sistema en el simulador de Helicóptero EC225 en el desarrollo con Indra para EC UK.

• CHELTON DF 935

Helicóptero EC225


Cabina del helicóptero EC225

ESTRUCTURA DEL SIMULADOR


• PI – HOST – C.VIRTUAL – C.REAL

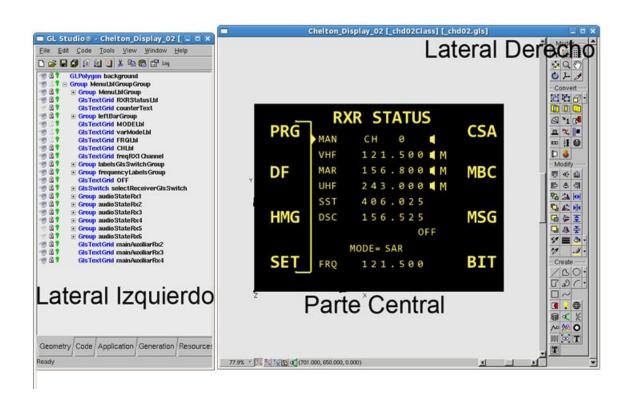
ESTRUCTURA DEL SIMULADOR

Desarrollo de módulos

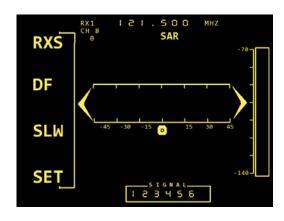
1. Análisis

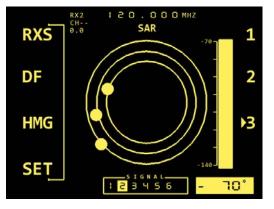
- Estudio de la documentación
 - Funcionamiento del dispositivo
 - Estructura del dispositivo

1. Análisis


- Resolución de dudas
- Elección de metodología de trabajo
 - Creación de pantallas en glStudio
 - Desarrollo de la parte lógica del dispositivo en su correspondiente módulo.

- 2. Desarrollo y pruebas realizadas
 - Creación de la parte gráfica
 - Aprendizaje de la herramienta glStudio
 - Programación en GNU C++
 - Prueba de los distintos menús
 - Creación del módulo y pruebas
 - Creación del módulo que contiene la parte lógica del dispositivo
 - Realización de pruebas en los distintos cálculos necesarios
 - Unión entre el módulo y la parte gráfica


glStudio



Pantallas del Chelton DF 935 [1]

• Pantallas del Chelton DF 935 [2]

DVC	PR	OG RX
RXS	R X 4	UHF
	CHANNEL	
DF	FREQ 24	40.000
DΓ	ON/OFF	ON
	SQ.TYP	NOISE
	LEVEL	
HMG	AUDIO	NORMAL
	B/W	WIDE
	MOD	AUTO
SET		

RXS		SETUP UME	DF 0 6)	0
DF			ВОТ	TOM	MNT
HMG				UHF	MBR
SET	DSP BF	Ver Ver	1.0		

RXS	CONTROLLER		
	FLASH ON-TOP		Y
DF	BEARING AGE		N
HMG	BRIGHTNESS	3	0
	AUTO MULTI		N
SET	INHIBIT TEST 35507-E V1.02		N

DVC	DF	REPORT	DET
RXS	SYNTH:	ок	RET
DF	PSU:	ОК	
	I2C :	O K	
DF	A / D :	ОК	
	TEMP :	O K	
	ANTEN:	ОК	
HMG	COMMS:	ОК	
SET			

- Creación del módulo
 - Ficheros fuente a crear:
 - Hmcheltondf.h /.cpp
 - HmcheltondfBase.h /.cpp
 - HmcheltondfSystem.h /.cpp
 - Hmcheltondf_parameters.h
 - Hmcheltondf_struct.h
 - Hmcheltondf_structlocal.h
 - Métodos destacados en System:
 - ModuleExecution
 - CalculateBeaconData
 - GetCover
 - GetGeodesicDistance

CalculateBeaconData [1]

```
void cl_CheltondfSystem::CalculateBeaconData(int rx, float frequencySelected)
// For 0 to 4 ( We receive data of 5 beacon [4 boats & 1 Cast away])
for (int index = 0; index < MAX_NUM_BEACONS; index++)
 chelton_out->beacon[index].state = input->beaconSar[index].state;
 // Beacon not detected (by default)!!
 chelton out->beaconDetected[rx][index] = false;
 // Beacon ACTIVE
  if (chelton_out->beacon[index].state)
    // Set data about a beacon
    m_PositionBeacon.SetLatLon(input->beaconSar[index].latitude, input->beaconSar[index].longitude);
    // Compare the beacon frequency with frequency selected
 if (input->beaconSar[index].frequency == frequencySelected)
      // Calcule the geodesic distance relative to Hel
      chelton_out->beacon[index].distance = GetGeodesicDistance(input->Hel.dLatitude,
                                     input->Hel.dLongitude,
                                     input->beaconSar[index].latitude,
                                     input->beaconSar[index].longitude);
      // If the geodesic distance is < coverRadius ...
      if( chelton_out->beacon[index].distance < coverRadius)
```


CalculateBeaconData [2]

```
// Beacon detected!!
        chelton_out->beaconDetected[rx][index] = true;
        // Calcule the bearing relative, age and the strength (inverse to distance)
        chelton_out->beacon[index].bearingRel = m_Receptor.RadialRelativo(input->beaconSar[ind-
        chelton_out->beacon[index].bearingRel = fmod(chelton_out->beacon[index].bearingRel - ing
                             +360 + 180, 360) - 180;
        chelton_out->beacon[index].age = 0;
        chelton_out->receptorDetectedBeacons[rx] = true;
        chelton_out->beacon[index].strength = 1/chelton_out->beacon[index].distance;
      }// end if beacon.distance < coverRadius
    }// end if (input->beaconSar[index].frequency == frequencySelected)
 }// end_if (chelton_out->beacon[index].state)
 else
   // Si no está activa ...
   chelton_out->beacon[index].strength = 1;
   countdTime += dTime;
   if (countdTime > 10)
       countdTime = 0;
       chelton_out->beacon[index].age++;
 // Sort the beacons by strength
 SortBeacons();
}// End_for (int index = 0; index < MAX_NUM_BEACONS; index++)</pre>
```


GetCover

```
double cl_CheltondfSystem::GetCover()
{
    double height = input->Hel.dAltitude;
    double cover = sqrt(height + ( 2 * height * EARTH_RADIUS * 1000));

    // Get the cover of DF
    if (cover > MIN_DETECTION_DISTANCE)
        return cover;
    else
        return MIN_DETECTION_DISTANCE;
} // End of GetCover
```

GetGeodesicDistance

DEMOSTRACIÓN EN CABINA VIRTUAL

VÍDEOS Y FOTOS DEL SIMULADOR

Ver vídeos y fotos...

CONCLUSIONES

- Posibles mejoras
 - Sistema de mensajería SST y DSC
 - Botón de chequeo del dispositivo
 - Mayor número de balizas detectadas
- Conclusiones finales
 - Funcionamiento de una empresa grande
 - Conocimiento de protocolos
 - Importancia de una buena organización
 - Relación con el resto del equipo

AGRADECIMIENTOS

 Gracias a todos por asistir a esta presentación